1 + 2 lygis

Duomenų mokslas – pradedančių studijos

480 valandų

Duomenų mokslas šiandien yra būtina bet kurio verslo dalis, atsižvelgiant į didžiulį duomenų kiekį su kuriuo susiduriame kiekvienas. Duomenų mokslas šiuo metu yra viena iš labiausiai diskutuojamų temų, o jo populiarumas bėgant metams tik auga.

Tai kas iš tikrųjų yra tas duomenų mokslas? Duomenų mokslas yra studijų sritis, kurioje nagrinėjami didžiuliai duomenų kiekiai, naudojant šiuolaikines priemones ir metodus, kad būtų galima rasti nematytus modelius, gauti prasmingą informaciją ir priimti verslo sprendimus. Duomenų mokslas naudoja mašininio mokymosi algoritmus kuriant nuspėjamuosius modelius.

  • 1608€
    Vidutinis duomenų inžinieriaus atlyginimas Lietuvoje
  • 96%
    Duomenų inžinieriai Lietuvoje yra patenkinti savo darbu
  • 82%
    Studentų sėkmingai pabaigia Duomenų mokslo studijas

Įsidarbinimo galimybės

Atsiliepimai

Mantas Sviklas

RPA DevOps Engineer @Telia

CodeAcademy pasirinkau nes jie aiškiai papasakojo apie kursų krypčių pasirinkimus ir galimybes. Įsiminė kantrūs dėstytojai, kurie visada atsakydavo į kilusius klausimus ir informuodavo, kad kiekvieną problemą galima spręsti keliais būdais.

Enrika Vyšniauskaitė

Software Developer @ FL technics

Patirtis šioje akademijoje man padėjo ne tik nustatyti savo kryptį IT srityje bet ir parengė stipriais Python pagrindais.
Užbaigiau web dizaino, frontendo ir backendo kursus. Visi kursai išmokė manęs laikytis disciplinos mokymosi erdvėje ir leido
sustrateguoti savo laiką taip jog spėčiau užsiimti savais hobiais ir mokytis programavimo.
Galiu pasidžiaugti, kad su Pythonu keliaujam jau į antrą darbovietę.

Programa

6 mėn.
  • 1 temos
  • 2 temos
  • 3 temos
  • 4 temos
  • 5 temos

Programavimas su Python

  • Įvadas
  • Aplinkos paruošimas
  • Virtualios programavimo aplinkos kūrimas (VENV)
  • Pirmoji programa bei komandinė eilutė Kintamieji, if sąlyga Versijavimas (git)
  • Data tipai – Boolean, data, laikas, masyvai, žodynai
  • Ciklai, išimtys
  • Funkcijos
  • Objektinis programavimas, klasės
  • Paveldėjimas, klaidų ieškojimas (debug)
  • Darbas su katalogais ir failais
  • Loginimas
  • UNIT testų kūrimas
  • Web Scraping
  • RestAPI – Flask framework’o įžanga, Docker

Tiriamoji duomenų analizė (Exploratory data Analysis)

Exploratory Data Analysis refers to the critical process of performing initial investigations on data so as to discover patterns, to spot anomalies, to test hypothesis and to check assumptions with the help of summary statistics and graphical representations.

  • Jupyter notebook
  • Numpy
  • Duomenų manipuliacija (Pandas)
  • Vizualizacija (maltplotlib, seaborn)

Duomenų klasterizavimas ir klasifikavimas

  • Duomenų tyrybos teorija
  • Tiesinė regresija
  • Logistinė regresija ir K-artimiausio kaimyno metodai
  • Bajeso klasifikatorius
  • Sprendimų medžio ir atsitiktinio miško metodai
  • Artimiausių vidurkių ir hierarchinio klasterizavimo metodai
  • Asociacijų taisyklės
  • Teksto analizė

Įvadas į mašininį mokymąsi

  • Mašininio mokymosi pagrindai
  • Atsitiktiniai miškai – vienas iš galingiausių ir universaliausių mašininio mokymosi algoritmų
  • Duomenų ištyrimas
  • Modelių tvirtinimas
  • Trūkstamų verčių tvarkymas ir kt.

Asmeninis projektas

  • Darbas su pasirinkta užduotimi
  • Duomenų rinkimas
  • Duomenų apdorojimas
  • Tiriamoji duomenų analizė
  • Modelio kūrimas
  • Modelio deploy‘inimas
  • Modelio stebėjimas
Atsisiųsti programą

Dėstytojai

Mūsų dėstytojų komanda – skirtingų IT specialistų mišinys. Vieni, kaip kokie superdidvyriai 🦸, dienomis
užima Top pozicijas savo įmonėse ir vakarais atsiliepia į studentų pagalbos šauksmus, kiti – dirba kaip freelancer’iai, kasdien žongliruodami tarp klientų bei studentų. Tačiau visi jie 100% pasiruošę žiniomis ir patirtimi padėti tau! 🧑‍🎓

Data

Justas Kalpokas

Senior Data Scientist @Exadel

Data

Tomas Rasymas

Head of AI @ Hostinger

Data

Erikas Švažas

Data Scientist @Vinted

Data

Dainius Gaidamavičius

Data Scientist @Agmis
Data

Domantas Nikartas

ML Engineer @Eliq

Mokymosi aplinka

CodeAcademy mokymosi aplinka palengvina mokymosi procesą bei leidžia tau mokytis, kad ir kur būtum. 🌏 Paskaitos dėstytojų vedamos gyvai, o po jų – neribota prieiga prie visų paskaitų įrašų, medžiagos bei užduočių. 🙌

 

Programos kalendorius

Laikotarpis

balandžio 22 d. - gruodžio 2 d.

Laikas

18:00 - 22:00

Trukmė

480 valandų

Kaina

nuo 4200 € arba nuo 50€/mėn. išsimokėtinai.

Skaičiuoklė

Išsimokėjimo galimybės

Mes siūlome tiek skirtingų išsimokėjimo galimybių ir lengvatų, kad sukūrėme skaičiuoklę savo galimybes pasiskaičiuoti pačiam – visai kaip banke. 💸

CodeAcademy finansavimas

  • Nuo 50 €/mėn.

100% Užimtumo Tarnybos finansavimas

  • Užimtumo Tarnybos finansavimas leidžia persikvalifikuoti dirbantiems ir įgyti naujas kompetencijas nedirbantiems! 🚀
  • Besimokantiems studentams gali būti skiriamos UžT stipendijos, Daugiau informacijos čia.

Mokėk po sėkmingo įsidarbinimo!

  • Mėnesinis mokestis – 10% nuo Neto pajamų, su galimybe turėti mokėjimo atostogas iki 5 mėnesių.

Dažniausiai užduodami klausimai

Kursų grafikas yra fiksuotas, visos pamokos yra vedamos gyvai, profesionalių CodeAcademy dėstytojų, kuriems, paskaitų metu, galite užduoti klausimus, pasitikrinti namų užduotis, gauti patarimų dėl ateities projektų.

Mokslams virtualioje ervėje naudojame vieną pažangiausių bei lanksčiausių pedagoginių programų – Microsoft Teams. Kartu su Microsoft Teams turėsite prieigą prie Microsoft Office paketo nemokamai vieneriems metams.

Prisijungimai prie Studijų aplinkos studentams atsiunčiami likus 5-3 darbo dienoms iki užsiėmimų pradžios į sutartyje nurodytą el. paštą.

Susisiekite su mumis!








    Atsisiųskite programą